• Problem set #1 due. Solutions will be posted.
 – From now on, late work is not accepted unless we pre-arrange something.
• Read “The Lives of Stars (Part I)” for Wed.
 – Quiz at beginning of class
• Problem set #2 due Wed 16th.
 – Large online problem.
• Reminder: need approval of article for final presentations by Wed 16th.
Early History of the Universe (Part II)

Kathy Cooksey

AY5 Introductory Astronomy

Monday, July 7, 2008
Blackbody Radiation (revisited)

- Peak wavelength is defining characteristic
 - Depends on temperature (Wien’s Law)
- Higher temperature means more light at every wavelength.

This is very important for understanding early Universe.
Timeline of Big Bang

1 billion years:
- First galaxies form.

500,000 years:
- Atoms form; photons fly free and become microwave background.

3 minutes:
- Fusion ceases; normal matter is 75% hydrogen, 25% helium, by mass.

0.001 seconds:
- Matter annihilates antimatter.

10^{-10} seconds:
- Electromagnetic and weak forces become distinct.

10^{-38} seconds:
- Strong force becomes distinct, perhaps causing inflation of universe.

10^{-43} seconds:
- GUT Era
- Elementary particles
- 10^{-43} seconds: Planck Era
- ????

Particulate Era:
- Protons, neutrons, electrons, neutrinos (antimatter rare)

Era of Nucleosynthesis:
- Plasma of hydrogen and helium nuclei plus electrons

Era of Nuclei:
- Elementary particles (antimatter common)

Era of Atoms:
- Atoms and plasma (stars begin to form)

Cosmic Perspective

(proton, neutron, electron, antiproton, neutrino, antineutrino, antineutron, antielectron, quark)
Planck Era

- 0 s to 10^{-43} s
- Local Universe $\sim 10^{-35}$ m ($= c t_P$)
- Four fundamental forces unified
 - Do not understand physics of first 10^{-43} s
 - “Theory of Everything”: supersymmetry, superstrings, quantum gravity
Fundamental Forces

<table>
<thead>
<tr>
<th>Force</th>
<th>Exchange Particle</th>
<th>Relative Strength</th>
<th>Range (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong Nuclear</td>
<td>gluon</td>
<td>10^{38}</td>
<td>10^{-15}</td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>photons</td>
<td>10^{36}</td>
<td>Infinite</td>
</tr>
<tr>
<td>Weak Nuclear</td>
<td>W, Z bosons</td>
<td>10^{25}</td>
<td>10^{-18}</td>
</tr>
<tr>
<td>Gravitational</td>
<td>graviton</td>
<td>1</td>
<td>Infinite</td>
</tr>
</tbody>
</table>
Grand Unified Theory Era

• $\approx 10^{-43}$ s to 10^{-35} s
• Ends with $T \approx 10^{28}$ K
 – Strong nuclear force separates from electroweak force
 – Suspected cause of inflation
Inflationary Era

- $\approx 10^{-34}$ s to 10^{-32} s
- $T \approx 10^{27}$ K throughout
 - Universe reheated.
- Expansion faster than speed of light
 - 10^{-50} m to 1 m
- **Isotropic and homogeneous** expansion
- Regions originally in *causal contact* pushed outside cosmic horizon
- Universe **flattened** (spatial density \approx critical).
Causal Contact

Age of Universe and (finite) speed of light defines observable Universe.

(Cosmic Perspective)
A and B not in causal contact but can be similar.

A and B in causal contact and had knowledge of each other.

(Cosmic Perspective)
Flat Universe

(Cosmic Perspective)
Critical Density

(Cosmic Perspective)
Isotropic and Homogeneous

Isotropic: uniform in all directions
Homogeneous: same composition throughout

Is the Universe so?
Isotropic and Homogeneous

• Is the Universe so?
 – No. We can see that in each other.
 – On large scales the symmetry improves.
 – CMB is very smooth.

• Inflation stretched quantum fluctuations to structure size so Universe could evolve.
 – To be revisited later
Electroweak Era

- $\approx 10^{-32}$ s to 10^{-11} s
- Ends with $T \approx 10^{15}$ K
 - Weak nuclear force separates from electromagnetic force
 - Fundamental particles gain mass from Higgs mechanism
Particle Era

• ≈ 10^{-12} s to 10^{-3} s
 – Physics understood (even reproduced in particle accelerators)
• At ~10^{-4} s, quarks form into neutrons, protons, etc.
 – Neutrons, protons formed here (make up us).
• Ends with T ≈ 10^{12} K
 – Spontaneous production of neutrons, protons no longer possible
• As many particles as photons
 – Electrons, neutrinos, quarks
Intro to Particle Physics

How do matter and energy work?
Particle Accelerators

- “Recreating” Big Bang
- High energy collisions reproduce processes of early Universe

Compact Muon Solenoid, CERN
Standard Model of Particle Physics

- **Quarks**: indivisible units of most common matter.
- **Baryons**: ordinary matter (3 quarks)
 - Proton (uud), neutron (udd)
- **Neutrinos**: signature of high-energy processes.
- **Anti-particles** exist.
Pair Production

• Matter and energy are interchangeable.
 – Law of conservation of energy/matter
• Create e.g., electron-positron pairs
• Boltzmann constant \(k = 1.381 \times 10^{-23} \text{ J/K} \)
 \(= 8.617 \times 10^{-5} \text{ eV/K} \)

\[E = mc^2 \]

\[E \approx kT \]

(Cosmic Perspective)
Blackbody Radiation: Source of Energy

- $T = 12,000 \, \text{K}$: $\lambda_m \approx 250 \, \text{nm}$
- $T = 6000 \, \text{K}$: $\lambda_m \approx 500 \, \text{nm}$
- $T = 3000 \, \text{K}$: $\lambda_m \approx 1000 \, \text{nm}$

Brightness vs. Wavelength (nm)
Blackbody Radiation: Atoms in Motion

• Everything is composed of atoms that are constantly in motion.
Blackbody Radiation: Atoms & Temperature

- Hotter objects have atoms that move faster.
Atoms collide as they move around.
Collisions release energy.
But energy is radiation.
Blackbody Radiation: Source of Energy

- $T = 12,000 \text{ K}$: $\lambda_m \approx 250 \text{ nm}$
- $T = 6000 \text{ K}$: $\lambda_m \approx 500 \text{ nm}$
- $T = 3000 \text{ K}$: $\lambda_m \approx 1000 \text{ nm}$

Brightness vs. Wavelength (nm)
Particle Era (Recap)

• $\approx 10^{-12}$ s to 10^{-3} s
 – Physics understood (even reproduced in particle accelerators)
• At $\sim 10^{-4}$ s, quarks form into neutrons, protons, etc.
 – Neutrons, protons formed here make up us.
• Ends with $T \approx 10^{12}$ K
 – Spontaneous production of neutrons, protons no longer possible
• As many particles as photons
 – Electrons, neutrinos, quarks
Era of Nucleosynthesis

- $\approx 10^{-3}$ s to 3 min
 - Goldie Locks: temperature and density just right for nuclear fusion
- Universe dominated by radiation
- Ends with $T \approx 10^9$ K
 - Ordinary (baryonic) matter: 75% H, 25% He (0.01% D, 10^{-8}% Li, Be) by mass
Big Bang Nucleosynthesis

Periodic Table of the Elements

(GPC)
Hydrogen and Helium

- Observed abundances evidence for Big Bang
- $T > 10^{11}$ K, equal numbers of neutrons and protons
- $10^{10} \text{ K} < T < 10^{11}$ K, protons outnumber neutrons
- $T \approx 10^9$ K, ^4He stable (less gamma rays)
- 7 protons for every 1 neutron
 - H is just proton when ionized.

(Cosmic Perspective)
Era of Nuclei

- ≈ 3 min to 500,000 yr
- Plasma of H and He nuclei and free electrons
 - Photons bounce around and never get far (unobservable)
- Ends with T ≈ 3,000 K
 - Cool enough for recombination
 - Photons stream away as cosmic microwave background
- Universe dominated by matter
 - Begin “Cosmic Dark Ages”
Cosmic Microwave Background

- Strongest evidence for Big Bang theory
 - Especially inflation
- 3,000 K redshifted to 2.725 K
- Isotropic (uniform) to one part in 100,000
- Remnant of last scattering surface (when H formed)

(WMAP)
z: Redshift

- Speed of light
 \(c = 3 \times 10^5 \text{ km/s} \)
 \(= 186,000 \text{ mi/s} \)
- Hubble’s constant
 \(H_0 = 70 \text{ (km/s)/Mpc} \)
- Distance \(D \)
 \((1 \text{ Mpc} = 3.3 \times 10^6 \text{ light-year}) \)
- Wavelength \(\lambda \)
 (observed and emitted)
- Velocity \(v \)

\[
\begin{align*}
 c z & = H_0 D \\
 z & \equiv \frac{\lambda_{\text{obs}}}{\lambda_{\text{em}}} - 1 \approx \frac{v}{c}
\end{align*}
\]
Redshift and Time

- Speed of light is finite.
- Distance (redshift) and time related.
- We observe distant objects as they were in the past.
Observing CMB

- Penzias and Wilson at Bell Labs, NJ (1965)
 - First detection
- Cosmic Background Explorer (COBE, 1989-1993)
 - First measure anisotropy
- Wilkinson Microwave Anisotropy Probe (WMAP, 2001-present)
 - Concordance cosmology

COBE (Physics Today)
First Stars

• $\approx 400,000 \text{ yr (} z \approx 1100)\}$
• Heat and reionize Universe
 – End of “Cosmic Dark Ages”
• Universe ionized by $\approx 1 \text{ Myr (} z \approx 6)\}$
Timeline of Big Bang

1 billion years
Era of Atoms
500,000 years
Era of Nuclei
3 minutes
Era of Nucleosynthesis
0.001 seconds
Particle Era
10^{-10} seconds
Electroweak Era
10^{-38} seconds
GUT Era
10^{-43} seconds
Planck Era

First galaxies form.
Atoms form; photons fly free and become microwave background.
 Plasma of hydrogen and helium nuclei plus electrons.
 Protons, neutrons, electrons, neutrinos (antimatter rare).
 Elementary particles (antimatter common).
 Elementary particles.
 Electromagnetic and weak forces become distinct.
 Strong force becomes distinct, perhaps causing inflation of universe.

(Cosmic Perspective)
Summary

• Universe expands and cools since Big Bang until first stars (~500,000 yr).
 – Inflation is exception.

• Evidence for Big Bang:
 – Cosmic Microwave Background
 – Expansion of Universe
 – Big Bang Nucleosynthesis: 75% H, 25% He

• Inflation “fixes” problem with Big Bang theory
 – Isotropy and homogeneity, critical density, flatness

• \[z = \frac{\lambda_{\text{obs}}}{\lambda_{\text{em}}} - 1 \] (relates to distance and time)
Class Notes

- Problem set #1 due. Solutions will be posted.
 - From now on, late work is not accepted unless we pre-arrange something.
 - Quiz at beginning of class
- **Math quiz**, end of class Fri.
 - Review work from class and 1st problem set
 - Familiarize yourself with 2nd problem set
- Problem set #2 due Wed 16th.
 - Large online problem.
- Reminder: need approval of article for final presentations by Wed 16th.
Anthropic Principle: Why is the Universe the way it is?
Anthropic Principle

• “Why is the Universe the way it is?”
• “If the Universe was not as it is, there would be no life, and we would not even be here to answer this question.”
• Observational bias